CYCLOMETALLATION

V. MOLECULAR STRUCTURES OF ACETATE-BRIDGED DIMERS OF A 2-ARYLPYRIDINE AND A 2,6-DIARYLPYRIDINE CYCLOMETALLATED BY PALLADIUM(II)

J. SFLBIN, K. ABBOUD, S.F. WATKINS. M.A. GUTIERREZ. and F.R. FRONCZEK
Department of Chemistrv. Louisiana State L'ntersity Raton Rouge, Lomstana 70803 (U.S.A.)

(Received July 7th. 1982)

Abstract

Summary

The crystal and molecular structures of dimeric cyclopalladated acetato(OAc)bridged complexes of a 2-arylpyridine (1) and a 2,6 -diarylpyridine (2). $[\mathrm{Pd}(1) \mathrm{OAc}]_{2}$ (3) and $[\mathrm{Pd}(2) \mathrm{OAc}]_{2}$ (4) have been determined by X-ray diffraction. In each, two planar acetates, nearly perpendicular to each other, cis-bridge two $\mathrm{Pd}^{\prime \prime}$ atons, while the other two square planar sites on each metal are occupied by the cyclometallated aryl-substituted pyridine. The two metal coordination planes are in near parallel registry with one another, giving a "boat" molecule shape of exact (3) or near (4) two-fold symmetry. The non-bonding $\mathrm{Pd} \cdots \mathrm{Pd}$ distance (δ) strongly correlates with the angle (α) subtended by the metal coordination planes, which in turn seems related to the steric requirements of the non-bridging ligands. In 3. with the planar nitrophenylpyridine ligand, $\alpha 25.7^{\circ}$ and $\delta 2.822(6)$ A. the shortest Pd \cdots Pd distance yet observed in dimers of this type. The Pd-C lengths, $1.94 \AA$ in 3 and $1.944 \AA$ in 4. are significantly shorter than the calculated length, 2.05 A , suggesting partial multiple bond character in these shortest Pd C (aryl) bonds so far observed. Pd N bond lengths are near expected single bond lengths. Failure of trans-dimetallation to occur in 4, analogous to that recently observed with certain 2,6-dialkylpyridines or to the tridentate behavior of terpyridine in [Pd terpy X$]^{+}$compounds, appears due to a combination of the shortened $\mathrm{Pd}-\mathrm{C}$ bond in the first-formed metallated ring and the larger constraining angles (near 120° for $s p^{2}$ carbons) in the remaining (unmetallated) ring.

Introduction

A one page report [1] of the molecular structure of π-allyl palladium acetate pictured it as an acetato-bridged dimer and suggested that the $\mathrm{Pd} \cdots \mathrm{Pd}$ distance of $2.94 \AA\left(0.3-0.4 \AA\right.$ shorter than in $\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{4}\right][\mathrm{PdX} 4]$, with $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}{ }^{-}$, or SCN) represented a metal-metal bond. A decade later the structure of a second acetatobridged palladium-(II) dimer, di- μ-acetato-bis[(2-methylallyl-3-norbornyl) pal-
ladium(II)]. was reported [2]. in which a Pd . . Pd distance of 2.960 A was found and considered to represent "a rather strong interaction... between the two Pd ions". Two different Pd-. () distances (2.198 and 2.106 A) were taken as evidence of a strong trans influence of the carbon atom of the norbomy entity. The first acetato-bridged dimer of cyelometallated palladium(II) appears to be sym-trans-di-μ-acetato-bis[o-(t-butyl-o-tolviphosphino) henzyl] dipalladium(II). in which a sterically hindered phosphorus coordinate to the metal and internal metallation has occurred at a tolyl-methyl carbon [3]. The very long Pd... Pd distance of 3.413 A

(1)

(2)

(4)

(3)

($\mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3}$ or $\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$;
py = pyridine $)$
(5)
"is held to be non-bonding". and is attributed to the "intramolecular steric overcrowding between the bulky phosphine ligands". The similar Pd O lengths (2.120 and 2.138 A) suggest there is little difference in the trans influences of a benzyl carbon and a phosphorus. The dimer bis(μ-acetato)-dichorobisedimethylphenylphosphine) dipalladium(II) (which crystallizes with $1: 2$ (HCl: per mol). while acetato-bridged. does not involve evelopalladation. However the boat conformation of the bridging acetates does bring the palladium atoms to within 2.944 A of each other: but here the authors [4] state that there "is no direct interaction between the two metal ions". A greater trans effeet of phosphine compared to choride seems to be monitored in the respective Pd Olengths tran,s to these atoms. 2.12 (mean) and 2.03 (mean) A. Recently the crvital structures were reported $[5]$ for wo other dimeric
 $\mid\left.\mathrm{Pd}(2-\rho$-tolylbenzoxatole $) \mathrm{OAc}\right|_{2}$. The $\mathrm{Pd} \cdots \mathrm{Pd}$ distances are 2.871 and 2.842 A .
respectively, and "are regarded as nonbonding". It is interesting that in each compound the cyclometallation involves N . C bonding, rather than the other possibilities of S, C and O, C. respectively. The trans-lengthening influence of a bonded aryl carbon relative to that of a coordinated nitrogen is clearly illustrated by the $\mathrm{Pd} . \mathrm{O}$ lengths trans to these atoms (c.g. $2.139 \mathrm{vs} .2 .049 \AA$ and $2.129 \mathrm{vs} .2 .052 \dot{\mathrm{~A}}$. in the two compounds).

We prepared and studied by IR and NMR a number of cyclopalladated compounds of 2-arylpyridines [6,7] and 2.6-diarylpyridines [8] and we determined [9] by X-ray diffraction the structure of $\left[\mathrm{Rh}(1)_{2} \mathrm{Cl}\right]_{2}$.

We now report the X-ray crystal structures of two dimeric acetato-bridged cyclopalladated complexes:
$\operatorname{bis}\left(\mu\right.$-acetato- $\left.O: O^{\prime}\right)$-bis[4^{\prime}-nitro- 2^{\prime}-(2-pyridyl)phenyl- N]dipalladium(II), 3. and $\operatorname{bis}\left(\mu\right.$-acetato- $\left.O: O^{\prime}\right)$-bis $\left[5^{\prime}\right.$-chloro- $2^{\prime}-\left\{6\right.$-($4^{\prime \prime}$-chlorophenyl)-2-pyridyl $\}$-phenyl- N]dipalladium(II), 4; and discuss the relevance of these structures to those mentioned above (both $\mathrm{Pd}^{\prime \prime}$ and $\mathrm{Rh}^{\text {III }}$) and to some questions concerning metal- ligand bonding in cyclometallated compounds. The existance of planar palladium(II)-terpy compounds, where terpy $=2,6$-di(2^{\prime}-pyridyl)pyridine, and in particular the crystal structure [10] of [Pd terpy Cl$] \mathrm{Cl}$ which proves coordination via all three nitrogens, was the impetus to see if the structurally related 2.6 -diarylpyridine (2) could likewise serve to trans-dimetallate. The only previous success [11] at trans-dimetallation produced compounds such as 5 . in which the metallating carbons are $s p^{3}$. Efforts [8] to metallate the second ring in 4 were unsuccessful and so it was of interest to see if the detailed structure of the monometallated product (4) could help explain this failure.

Experimental

Complexes 3 and 4 were prepared as previously described [6,8]. A red-orange crystal of $\mathbf{3}$ was mounted in air on a glass fiber and mounted in random orientation on an Enraf-Nonius CAD4 automated diffractometer. Crystalline lattice characterization and data collection were as described in detail elsewhere [12] except that an empirical (ψ-scan) absorption correction was applied to each reflection. The relevant crystal data are listed in Table 1.

A total of 1644 observed reflections were used to calculate the Patterson and successive Fourier difference maps, from which all 20 non-hydrogen atoms in onc-half of the two-fold symmetric molecule were located. In addition, all hydrogen atoms except those of the methyl group were located: the methyl hydrogen positions were calculated assuming $s p^{3}$ hybridization. and were held fixed relative to the methyl carbon position. In the weighted full matrix least squares refinement, all non-hydrogen atoms were treated anisotropically. hydrogen atoms were treated isotropically. For the final structural model ($K=0.029$) no parameter shifted more than 0.3σ. and no residual electron density greater than $0.5 e^{\circ} \AA^{-3}$ was observed on a difference map.

Data were also collected for 4. A yellow crystal of 4 containing $50 \mathrm{~mol} \%$ chloroform molecules of solvation, was sealed in a thin walled glass capillary under an atmosphere of chloroform. Data were collected and treated as for 3. However. because of the nearly orthorhombic lattice, and also because of the symmetry of the molecule itself (vide infra) special care was taken to characterize the lattice and

TABIE:
(RYSTALLOERAPHICDAIA

"Space group 12 , is an alternate betting of ($2 \because$, with general equitalent pontom, (0,0,0:1 2.1 2.1 2)

TABIE 2
ATOMIC POSITIONAL PARAMETFRS ANI) I:QLNALFNT ISOIROPIC IHERMAL PARAMI:TERS FOR (PdC ${ }_{3} ; \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$):

Atom	x	y	$=$	$R^{\prime \prime}$	
Pd	$1.65306(2)$	$1.11557(4)$	1.012sm(2)	33324)	
(${ }^{(1)}$	1.70311 .3	1.2513(4)	1093321	S.30)	
O(2)	$1.6475(3)$	1.2710(4)	0.9431(2)	4.911	
O, 31	$1.4374(4)$	0.712016	$0.760012)$	70゙1	
O(4)	$1.4742(4)$	$0.5637(5)$	0.8445 (3)	0.721	
$\mathrm{N}(1)$	1.64814.3)	$0.9555(4)$	1.0785(2)	10, 11	
N(2)	$1.4762(4)$	$0.6797(6)$	0.82176)	52011	
(i1)	1.6022(3)	$0.9851(5)$	$0.9464(2)$	3.2(1)	
(12)	1.577644	1.6479(6)	$0.87 .33(2)$	4.071	
(13)	$1.5370(4)$	$0.909016)$	$0.83 .35(3)$	4311	
(14)	1.5216(4)	$0.76 .336)$	0.862437	4.111	
(15)	1.546.3(4)	$0.7548(6)$	0.9350×3	4.311	
(16)	1.5873(4)	$0.8562(5)$	$0.9735(3)$	$3.5(1)$	
(17)	$1.6136 \times 3)$	$0.8401(5)$	$1.10498(2)$	$3.41)$	
(18)	1.6()45(4)	$0.7254(6)$		4.929	
(19)	1.6302(5)	$0.7305(7)$	$1.1616(3)$	520	
(110$)$	1.6668(5)	0.8452 (8)	$1.1901(3)$	$5.42)$	
C(11)	$1.6741(4)$	$0.9581(6)$	1.146733	4.311	
((12)	1.7174(4)	$1.3037(5)$	$0.9040(3)$	4.1111	
(113)	$1.7030(6)$	$1.4167(8)$	$0.85 .7(4)$	6.422	

[^0]ATOMIC POSITIONAL PARAMETERS AND ISOTROPIC THERMAL PARAMETERS IOR $\left(\mathrm{PdC}_{19} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Cl}_{2}\right)_{2} \cdot \mathrm{CHCl}_{3}$

Alom	x	\cdots	z	H
Pd(1)	0	$0.46119(5)$	0	$2.901(7)^{\prime \prime}$
Pd(2)	$-0.01543(5)$	$0.07695(6)$	$0.00618(3)$	$3.119(8)^{\prime \prime}$
$\mathrm{Cl}(1)$	$0.0662(3)$	0.4827(5)	-0.2493(1)	$7.18(7){ }^{\prime \prime}$
$\mathrm{Cl}(2)$	0.0268 (3)	$0.6883(4)$	0.2950(1)	$7.33(6)^{\prime \prime}$
$\mathrm{Cl}(3)$	-0.3814(3)	0.0654(5)	0.1691 (1)	$8.16(7)^{a}$
$\mathrm{Cl}(4)$	0.4620 (2)	-0.1898(4)	$-0.1529(1)$	$7.20(6)^{\prime \prime}$
Cl(5)	0.8627 (3)	$0.5239(4)$	-0.3903(1)	7.34(7) ${ }^{\text {a }}$
Cl(6)	$0.7743(4)$	0.2058(5)	$-0.4457(2)$	10.03(10) ${ }^{\text {a }}$
Cl(7)	0.8021(4)	0.2241 (5)	$-0.3202(2)$	$9.48(9){ }^{\circ}$
O(1)	$0.0643(4)$	$0.4018(6)$	$0.0893(2)$	3.82(9)
$\mathrm{O}(2)$	0.1650(4)	0.4179(7)	-0.0255(2)	$4.05(9)$
O(3)	$0.1626(4)$	$0.1231(7)$	$-0.0154(2)$	3.95(9)
O(4)	$0.0358(4)$	$0.1116(7)$	0.0930(2)	4.20 (9)
N(1)	-0.1653(5)	$0.5338(7)$	$0.0137(2)$	$3.19(9)$
$\mathrm{V}(2)$	-0.0822(5)	$0.0230(8)$	-0.0762(3)	3.5(1)
C(1)	-0.0451(6)	$0.4898(9)$	-0.0826(3)	3.3(1)
C(2)	$0.0236(7)$	$0.4746(10)$	-0.1320(4)	4.0 (1)
(3)	-0.0229(7)	$0.4952(11)$	-0.1880(4)	$4.5(1)$
C(4)	-0.1362(8)	0.5257(13)	-0.1978(4)	5.3(2)
C(5)	$-0.2068(8)$	0.5385(11)	-0.1483(4)	4.8(2)
C(6)	$-0.1622(6)$	$0.5215(10)$	-0.0916(3)	3.6 (1)
C(7)	$-0.2287(6)$	$0.5383(9)$	-0.0368(3)	3.6 (1)
C(8)	$-0.3438(8)$	$0.5548(12)$	-0.0363(3)	5.2(2)
(19)	$-0.3988(8)$	$0.5726(12)$	$0.0171(4)$	$5.5(2)$
C(10)	$-0.3361(8)$	$0.5792(12)$	0.0683 (4)	5.3(2)
C(11)	-0.2190(7)	$0.5594(10)$	$0.0668(3)$	$3.9(1)$
$C(12)$	$-0.1518(6)$	$0.5796(9)$	$0.1224(3)$	3.4(1)
C(13)	-0.0646(7)	$0.7051(10)$	$0.1256(3)$	$4.0011)$
C(14)	-0.0119(8)	$0.7417(11)$	$0.1781(4)$	$4.8(2)$
C(15)	$-0.0430(7)$	$0.6490(11)$	0.2281(4)	4.5 (1)
C(16)	$-0.1268(8)$	0.5207(12)	$0.2265(4)$	5.2(2)
((17)	-0.1837(7)	$0.4915(11)$	$0.1734(4)$	4.4(1)
C(18)	$0.0690(6)$	$0.2558(8)$	$0.1138(3)$	3.3(1)
C(19)	$0.1178(8)$	0.2444 (11)	$0.1761(4)$	4.8(2)
C(20)	$0.2104(7)$	0.2670(9)	-0.0256(3)	3.6(1)
C(21)	$0.3357(8)$	$0.2599(11)$	-0.0415(4)	4.9(2)
C(22)	$-0.1739(6)$	$0.0566(8)$	$0.0295(3)$	3.2 (1)
C(23)	-0.2134(7)	$0.0661(10)$	0.0879(4)	$4.311)$
C(24)	-0.3289(8)	$0.0601(12)$	$0.0970(4)$	5.0(2)
C(25)	-0.4066(8)	$0.0506(13)$	$0.0501(4)$	5.4(2)
C(26)	$-0.3663(8)$	$0.0467(12)$	$-0.0067(4)$	5.1(2)
C(27)	-0.2488 (7)	$0.0484(10)$	$-0.0168(3)$	3.9 (1)
(128)	-0.1984(6)	$0.0338(9)$	-0.0765(3)	3.7(1)
C(29)	-0.2592(7)	$0.0337(11)$	-0.1287(4)	4.7(2)
$C(30)$	-0.2047(9)	$0.0149(14)$	-0.1824(4)	$5.6(2)$
C(31)	-0.0887(8)	-0.0022(13)	-0.1820(4)	5.1(2)
C(32)	-0.0293(6)	$0.0008(10)$	$-0.1278(3)$	$3.8(1)$
C(33)	$0.0942(7)$	-0.0396(10)	-0.1311(3)	3.8(1)
$\mathrm{C}(34)$	$0.1450(6)$	-0.1615(10)	-0.0937(3)	$4.0(1)$
C(35)	$0.2569(8)$	$-0.2095(11)$	$-0.1004(4)$	4.6(1)
$\mathrm{C}(36)$	$0.3199(7)$	-0.1314(12)	$-0.1442(4)$	4.7(2)
C(37)	$0.2743(8)$	$-0.0057(13)$	$-0.1815(4)$	$5.1(2)$
C(38)	$0.1608(7)$	$0.0405(10)$	-0.1742(3)	$4.1(1)$
C(39)	$0.7719(8)$	$0.3436(12)$	$-0.3837(4)$	5.2(2)

"Equivalent isotropic temperature factor: International Tables for X-Ray Crystallography, Vol. 4, p. 316.
space group. No lattice or space group with more symmetry than monodinic-Pn is consistent with the data: presumably this low symmetry results from packing distortion of the two parachlorophenyl substituents and also because only one chloroform molecule per dimer is included in the lattice.

Patterson. Fourier, and subsequent full matrix least squares techniques utilized 3177 ohserved reflections to locate and refine the positions of all 54 non-hydrogen atoms in 4 and the chloroform molecules. Only the Pd and Cl atoms were treated anisotropically, while all H. (. N. and O atoms were treated isotropicalls. All hydrogen atoms were fixed in calculated positions relative to their attached atoms. Refinement proceeded smoothly to $R=0.031$ with no correlations above 0.5 . and the final difference map showed a maximum residual electron density of 0.55 eA associated with the Pd atom.

The atomic scattering factors (Cromer and Mann (13]) were corrected for dispersion [14]. Atomic positional parameter are listed in Tables 2 and 3, while hond lengths and angles are shoun in Figs. 2 and 4. Tables of structure factors and anisotropic thermal parameters are atailable from the authors upon request.

Discussion of the structures

Both 3 and $\mathbf{4}$ have a central geometry (see Figs. 1 and 3) similar to that ohserved in other bis(μ-acetato)-dipalladium(II) complexes [1.2.4.5]. The approximate features are as follows: two acetates cis-bridge two palladium atoms. while the other two square planar coordination sites on each metal are oceupied by substituted phenstpyridine bidentate ligands. The planar acetate bridging groups are nearly perpendicular to one another and to the metal coordimation planes but the two metal coordination planes are in nearly parallel registry with one another. The molecular shape is thus that of a boat of exact (3) or near (4) two-fold summetrs.

There are specific distortions in the geometry described above which are fairly consistent over most knoun structures, meluding the two reported herem. For example, the non-honding $\mathrm{Pd} . . \mathrm{Pd}$ distance (δ) is strongly correlated * with the angle (α) subtended by the metal coordination planes. which in turn seems to be related to the steric requirements of the non-bridging ligands. Thus. in 3. with the highly planar nitrophenslpyridine ligand. a 25.7° and $\delta 2.822(6)$ A. the shorest Pd...Pd distance yet observed in dimers of this type. In 4 with the hulky parachlorophenyl substituents. the dihedral angle is opened slightly ($\alpha 25.9^{\circ}$) and the acetate bridge stretched (see Figs. 2 and 4) so that $\delta 2.90$ or 1) A. The greatest angle/distance yet observed is $48^{\circ} / 3.413(1)$ A to accommodate a tetrahedral, hulky substituted phosphorus ligand [3]. If the only steric requirements were those of symmetrically bridging acetate groups the "unstressed" Pd... Pd distance would he about 2.7 A [15]. However, in most known dimers of this type the acetate bridges do not span the metals symmetrically, due in pare to the stresses imposed by hulky ligands. and also to trans effects (vide infra) at the metal. Thus. the O. (- O angle is correlated to the Pd... Pd distance, and one Pd-O bond is consistently longer than the other. Bridge asymmetry in $\mathbf{4}$ nay also be enhanced by the hydrogen bond formed between the chloroform solvate molecule and $O(1)$ of the acetate bridge

[^1]

Fig. 1. Stereodiagram of $\left(\mathrm{PdC}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}$ (3).
$\left(\mathrm{O}(1) \cdots \mathrm{C}(20) 3.16 \AA, \mathrm{O}(1)-\mathrm{H} 2.20 \AA, \mathrm{O}(1)-\mathrm{H}-\mathrm{C}(20) 145^{\circ}\right.$). Chloroform-oxygen hydrogen bonding is a well established phenomenon in the solid state [17.18].

Details of the geometries of $\mathbf{3}$ and 4 are set forth below. It is interesting to note that, while the dimer 3 is of exact (crystallographic) two-fold symmetry. the dimer 4 deviates from two-fold symmetry, most notably in the orientation of the free parachlorophenyl ring, probably to accommodate packing forces and a chloroform molecule.

Metal coordination

3: All four coordinated atoms, $\mathrm{O}(1), \mathrm{O}(2), \mathrm{N}(1)$ and $\mathrm{C}(1)$, lie within one e.s.d. of the basal plane of a pyramid, at the apex of which is the Pd atom 0.051 (1) A above the plane toward the adjacent Pd atom.

4: Each independent metal atom lies in a mean plane, and the coordinated atoms are situated an average of $0.086(6) \AA$ alternately above and below this plane such that trans-coordinated atoms are displaced on the same side of the plane. This " S_{4} "

Fig. 2. Schematic diagram of $\left(\mathrm{PdC}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}$ (3) distances and angles.

 CHCl:

Fig. 4. Schematic diagram of ($\left.\mathrm{PdC}_{14} \mathrm{H}_{14}, \mathrm{NO}\right)_{2}\left(\mathrm{C}_{2} 1_{2}(4)\right.$ showing interatome dotance and angles.
distortion is in marked contrast to the " C_{4}," distortion in 3. The Pd C bond lengths. 1.94 A in 3 and 1.944 A in 4, are significantly shorter than the calculated single bond length of 2.05 A (based on the covalent radius of $\mathrm{Pd}{ }^{\prime 1} 1.31 \mathrm{~A}[19]$ and $C\left(s p^{3}\right)-C\left(s p^{3}\right) 1.537 \hat{\Lambda}$ and $\left.C\left(s p^{3}\right)-C\left(s p^{2}\right) 1.510 \hat{\wedge}[19]\right)$, suggesting partial multiple bond character in the $\mathrm{Pd}-\mathrm{C}$ (aryl) linkages. These appear to be the shortest $\mathrm{Pd}-\mathrm{C}$ (aryl) bonds thus far observed [5.20]. and coupled with proton NMR shift data [6,8]. the evidence is strong for palladium-to-aryl π back-bonding. While some of the shortening of the metal carbon distance might be anticipated in the eyclometallated ring, the 0.1 A shortening in the Pd C bonds may be compared to the 0.05 A shortening found in the $\mathrm{Rh}^{\prime \prime \prime}{ }_{-} \mathrm{C}(\mathrm{aryl})$ bond in the related $\left[\mathrm{Rh}(1)_{2} \mathrm{Cl}\right]_{2}$ [9]. In the latter, with only $t_{2 g}$ electrons, no π back-bonding is expected, although some ligand-to-metal π-electron flow is possible.

A combination of factors may account for the failure of Pd^{11} to dimetallate with 2.6-diarylpyridines. For example, the metal-nitrogen bonds trans to each other in $[\mathrm{Pd}$ terpy $\mathrm{Cl]Cl}$ are slightly longer than single bond length (2.044 and 2.104 A vs. a calculated 2.01 A) [10], whereas in 4 the shortened metal-carbon bond (vide supra) implies multiple bonding. Perhaps after this first Pd-(' bond forms, and pulls the Pd atom away from the other ring (where ortho carbons are now at 2.427 and $2.252 \dot{\mathcal{A}}$). effective metallation is prevented. Furthermore, note that in $5\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)$ the cyclometallated (mean) ring angles $\mathrm{Pd}-\mathrm{C}-\mathrm{C}$ and $C^{\circ} C^{-}-C^{\circ}$ involving sp carbons, are 102.2 and 110.8°, respectively [11]. whereas the corresponding ring angles in 4. involving sp carbons, are 114.7 and 114.6°. These latter angles plus the approximate 120° angles (c.g.. C(11)-C(14)-C(19), Fig. 4) which constrain the unmetallated aromatic ring system, coupled with the shortened Pd C (aryl) bond, must all combine to prevent dimetallation.

The Pd . O distances trans to the carbons are $2.14 \dot{\mathrm{~A}}$ in $\mathbf{3}$ and 2.192 A in 4 , whereas the $\mathrm{Pd}-\mathrm{O}$ distances trans. to the nitrogens are 2.03 A in 3 and 2.054 A in 4 . Although some asymmetry in the acetate bridge is expected on other grounds (vide supra). the substantial differences in the $\mathrm{Pd}-\mathrm{O}$ distances surely also reflect the stronger trans-lengthening influence of an aromatic carbon compared to an aromatic nitrogen. Finally, the $\mathrm{Pd}-\mathrm{N}$ lengths. 2.02 A in $\mathbf{3}$ and 2.047 A in 4 , are only slightly longer than the calculated single bond value of 2.01 A (based upon $\mathrm{Pd}^{11} 1.31 \mathrm{~A}$ [20] and $\mathrm{N}^{\prime}\left(s p^{2}\right) 0.70 \mathrm{~A}[21]$. In the analogous rhodium compound. $\left[\mathrm{Rh}(1)_{2} \mathrm{Cl}\right]_{2}$ a slight lengthening of $\mathrm{Rh}-\mathrm{N}$ (by 0.05 A) is found [8].

Acctate bridges

3: The four independent non-hydrogen atoms of the acetate group lie in a plane, and the two acetate planes subtend an angle of 81.6°. The C(12) acetate plane is skewed with respect to the basal planes of the metal coordination polyhedra: 86.4 (Pd) and $76.8^{\circ}\left(\mathrm{Pd}^{\prime}\right)$.

4: The two independent acetates are planar and subtend an angle of 79.9°. The equivalent skewed angles to the mean planes of the two metal coordination polyhedra are: $88.1^{\circ} / 86.9^{\circ}$ and $76.2^{\circ} / 75.5^{\circ}$.

Bidentate phenylpyridyl ligand

Three rings compose this ligand system: the five-member metallocyclic ring (1), the phenyl ring $(C(1)-C(6))(I I)$, and the pyridine ring (III). 3: All three rings are individually planar (within experimental error) and mutually co-planar to within 3°.

The dihedral angles with respect to the basal plane of the metal coordination polyhedron are: (I) 2.3°. (II) 4.6°. (III) 3.7°.
(4-average over two independent ligands): Ring I has a perceptible envelope conformation, with Pd at the flap, while rings II and III are planar. Rings II and III subtend an angle of 7.5°. and with respect to the mean plate of the metal coordination polybedron the dihedral angles are 5.3 (11) and 12.6^{*} (111). Thus the phenylpyridine system is significantly nonplanar in 4.

ligand substiments

3. The only substituent is a nitro group on the phenyl ring para to palladium. The four atoms (ineluding C(4)) which define this group lie in a plane which is not quite coplanar with the phensl ring. but is twisted 13° about the $\left({ }^{\circ} N\right.$ bond.

4: Each of the two phenylpyridyl ligands contains two substituents: (1) chlorine atoms on the phensl ringe meta to each palladium are $0.023(4)$ and $0.042(4)$ A from the ring plane away from the adjacent metal atom: (2) parachorophensl groups ortho to the pyridine nitrogen atoms are hent out of the pyridine planes away from the adjacent metals such that the ((14) atoms lie $0.144(7)$ and $0.180(7)$ A antof-plane. In addition, the chlorophent ring planes are twisted about the (' ('bond by I^{2} and 46°.

Chloroform

The chloroform molecule appears normal. whth three C. Cl distances of 1.726 . 1.726, and 1.740 A (each with $\sigma 0.010 \mathrm{~A}$: average hond length $1.734(7)$ A) and bond angles 112.7. 110.8 and $110.4^{\circ}(\sigma=0.5)$.

References

1 M.R. Churchill and R. Manom. Nature. 204 (1464) 777.
2 M. Zochi, G. Tiegli, and A. Albinati, J. Chem. Sow. Datton. (1073) 84:.
3 (i.J. Gansford and R. Mason. J. Organometal. Chem.. 80 (1474) 395.
4 W. Wong-Ne. P.T. Cheng. V. Koman, H. I uth and S.C. Nyhurg. Inorg Chem. IS (1979) 2620 .
5 MR. Churchill, H.J. Wasserman, and (i.J. Young. Inorg. Chem.. 19 (1980) 7e2
6 M.A. Ciutierrez. G.R. Newhome and J. Selbin. J. Organometal. (hem.. 202 (1980) 24].
7 J. Selhmand M.A. Guterres. J. Organometal Chem.. 214 (1981) 253
8 J. Selbin and M.A. Guterese to be published.
9 F.R. Proncek. M.A. Gutierred, and J. Sethin. (ryst. Struct Commun. in pres.

I G.R. Newhome and T. Kawato. Inorg Chm. Acta Letters. 37 (1979) I $481:$ GR Newhome. T.
 Amer Chem. Six., 103 (1981) 3423.
12 R.L.. Musselman. I.C. Stecher and S.F. Watkins. Inorg. Chem. 19 (1980) .iann
13 D. Cromer and I. Mann, Acta Crwi. A24 (196s) 321.
 (1468) pp. 215--216.

16 (alculated hydrogen positton. (111.09 A.
17 W.P. Schacfer and R.E., Marsh, Acta (ryst., B. 25 (1969) 1675
18 B.C. Wang. B.T. Hue, and W.P. Schaefer Acta Crst. B. TS f1979) 1232. and ref. therem.
19 M.R. Churchill. Perspect. Struct. Chem. 3(1970)91 164. particulark pp. iss 155
20 G. IeBorgne SI:. Bowaoud, D) (irandiean. P. Braunstein. J. Dehand and M Pfefer, J. Organometal. (hem. 136 (1977).375.
 224.

[^0]: " Iquivalent isotropic temperature factor: International Tables for \mathcal{X}-Ray (runtallograph, Vol, 4. p. ilo.

[^1]: * Correlation wefficient 0.875, sum of syaared resoduah (linear kent squaren 0.050.

